

LIPOR | Open Market Consultation

09 April 2024

Agenda

01. Project HOOP overview

02. Innovation Procurement Strategy and Open Market Consultation goals

03. LIPOR

Who we are

Biowaste management

Innovation strategy & Product development

04. LIPOR's innovation challenge: solutions for nutrient recovery from liquid digestate

05. The state of the art: advanced commercial solutions and relevant R&D&I projects in the field

06. Q&A

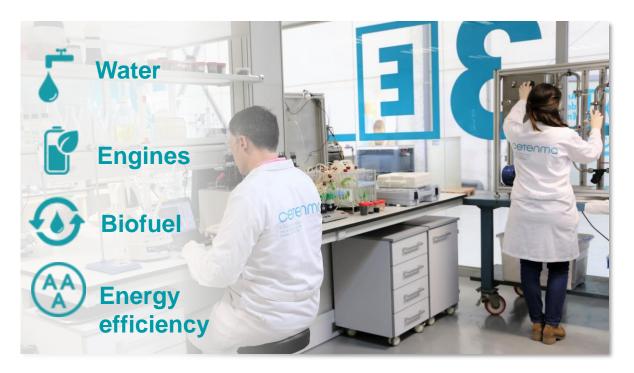
01 Project HOOP overview

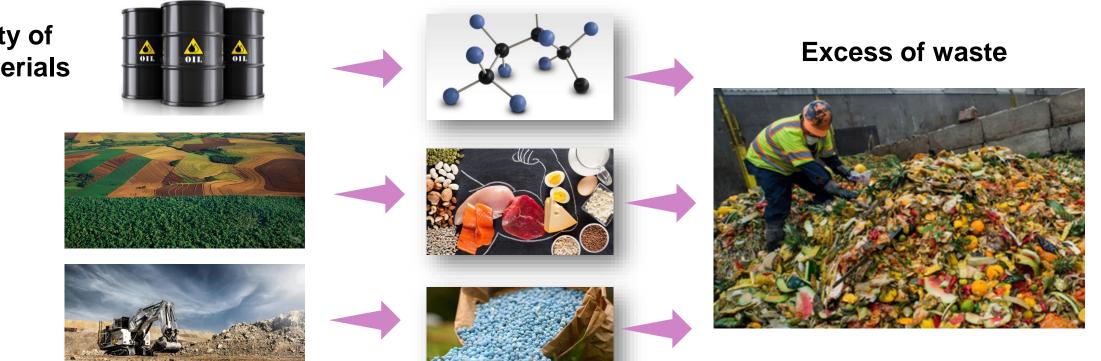
Vitalise Europe's Urban Bioeconomy

The HOOP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101000836

Miguel Ángel Suárez, CETENMA (Region of Murcia, Spain)

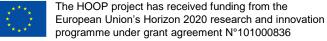
Centro Tecnológico de la Energia y del Medio Ambiente


cetenma

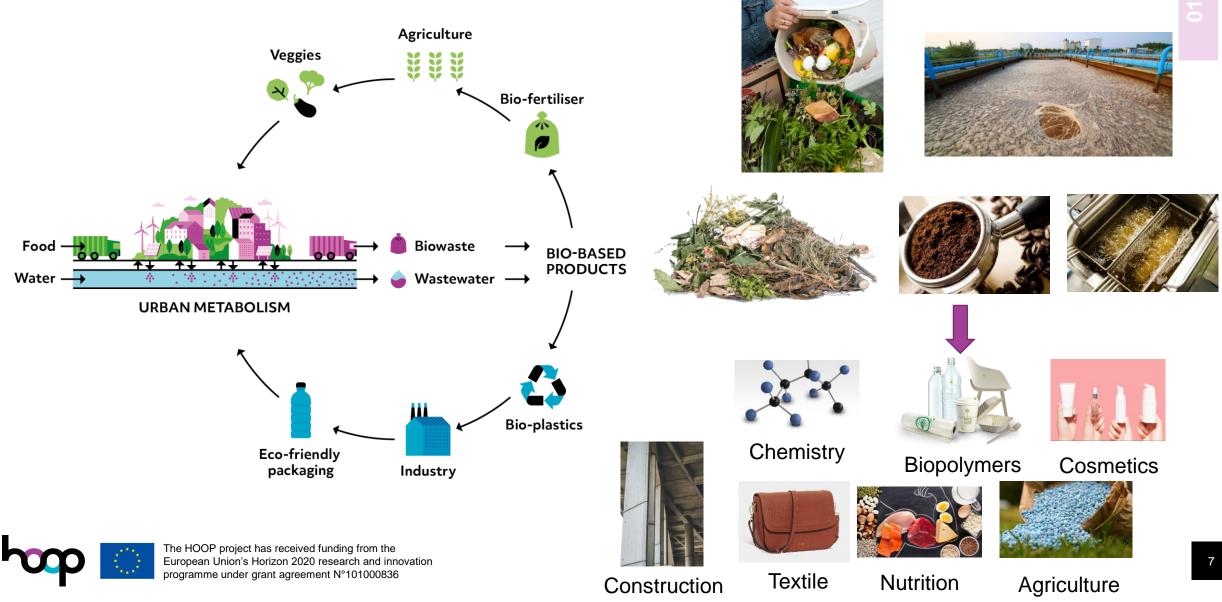

Centro Tecnológico de la Energia y del Medio Ambiente

The HOOP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101000836

The Technology Centre for Energy and the Environment, <u>CETENMA</u> (Cartagena, Spain), is a private, non-profit Business Association, which was set up to support companies with technological research, development and innovation in all areas related to Energy and the Environment, thereby assisting them in becoming more competitive.



HOOP is about Urban Circular Bioeconomy: why?


Concerns

Urban Circular Bioeconomy: the concept

Urban Circular Bioeconomy: the problem

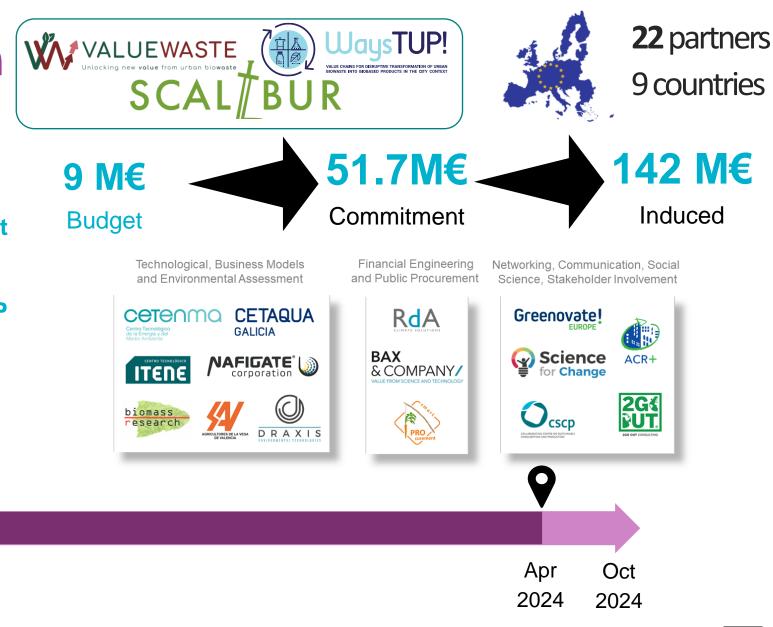
Very necessary, very good, great idea

BUT

A challenge on full

scale

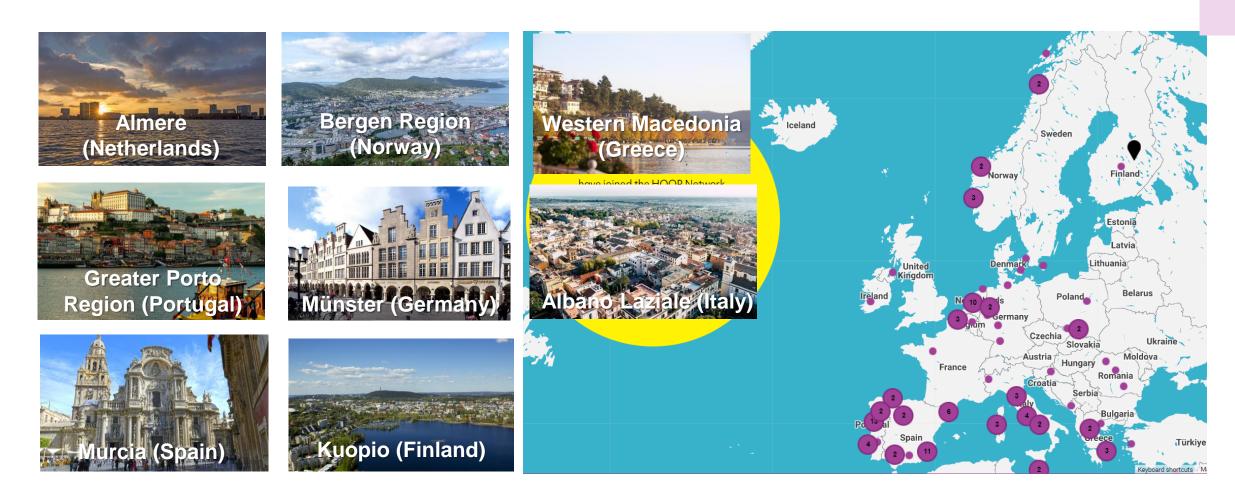
¿Why?


- Funding
- Regulatory
 barriers
- Scale-up
- Market for bioproducts
- Etc...

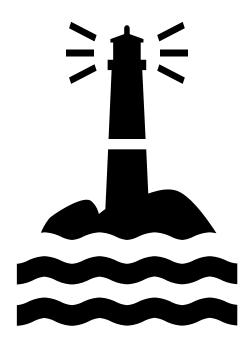
The HOOP Solution

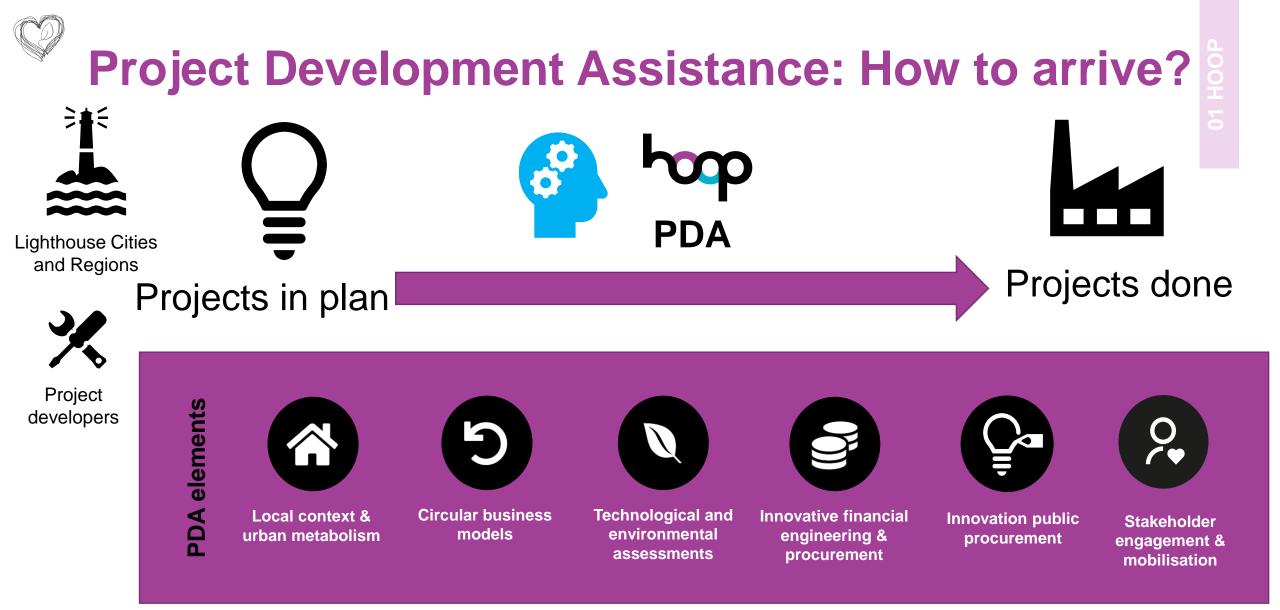
- What? Unlock investments in urban circular bioeconomy
- ¿How? Providing project development assistance (PDA)
- ¿To whom? To projects in our 8 HOOP Lighthouses
- Scope: Valorisation OFMSW/sludge into bioproducts

Oct

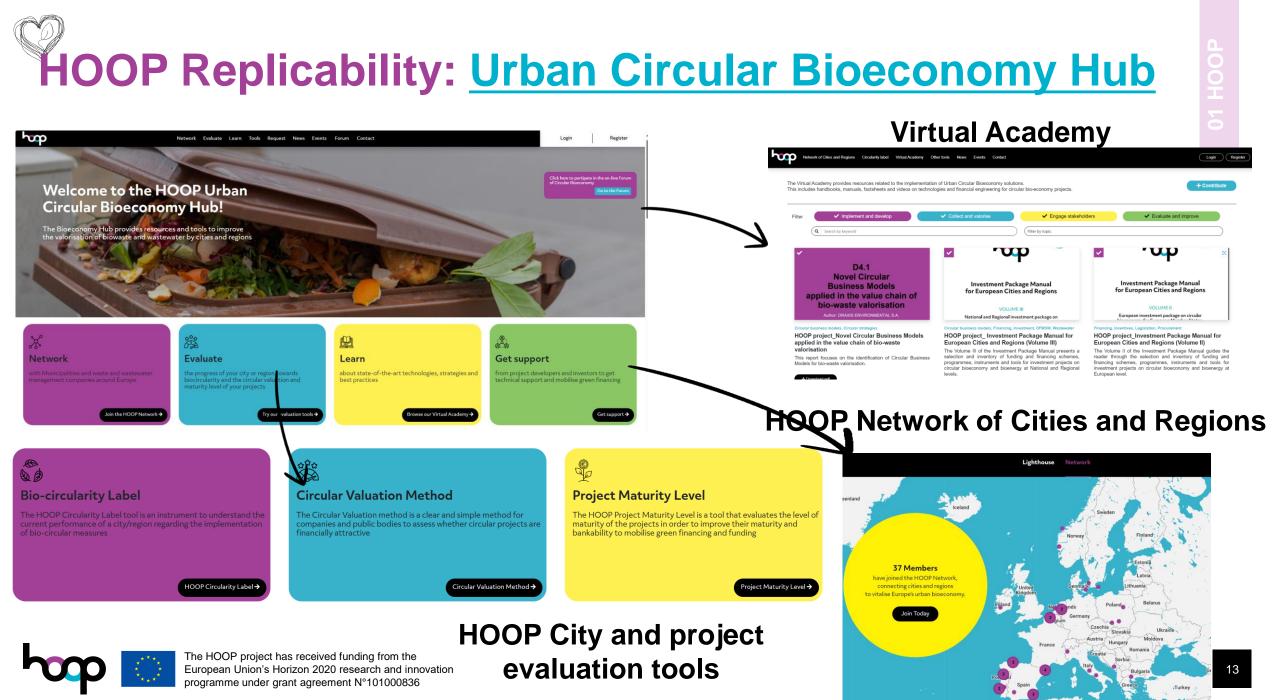


8 HOOP Regional Partners Lighthouse Cities and Regions





HOOP: the city/region as protagonist


- The focus is the city/region, not the technology
- Understanding the context \rightarrow urban metabolism analysis
- Urban Circular Bioeconomy projects oriented to solve challenges of the city/region
- Tailor-made assistance
- Public procurement as catalyst for the implementation of the Urban Circular Bioeconomy and innovation

hood 💽

The HOOP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101000836 Technical, economic, financial and legal expertise to develop concrete investments.

HOOP in other initiatives

- HOOP is a projects part of the <u>Circular Cities and</u> <u>Regions Initiative</u> (CCRI)
- Member of 2 CCRI working groups:
 - Bioeconomy
 - Industrial symbiosis
- HOOP is one of the projects part of ROOTS policy initiative

The HOOP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101000836 Circular Policies for changing the biowaste system

02 Open Market Consultation

Innovation Procurement Strategy and Open Market Consultation goals

Sara Bedin, HOOP

OMC process

proactive analysis of the offer system (availability of solutions and knowledge, business risks, technical and operational info...) to identify and define the most suitable means to satisfy one's needs.

Bedin & Tundo

reducing the information asymmetries existing between contracting authorities and market operators, so that the procurement takes place according to the best competitive criteria.

OMC objectives

Proactively analysing technology offerings and on-going developments. Providing an overview on the intended contract objectives.

Find out whether **technologies are** commercially available and acquire information about the advantages and disadvantages and the level of fulfilment of the desired functionalities, in order to confirm the assumption for the innovation procurement scope;

Enabling networking

and supplier

performance.

OMC "rules"

Supply side

consultative, non-selective and free-of-charge process

not a requirement to submit a proposal to the planned call for tender,

not lead to any rights or privileges for the participants,

not part of any prequalification or selection process,

contributions provided free of charge, without any right to reimbursement of expenses. not a commitment to procure,

not an obligation to set limits to the content of the (future) invitation to tender,

any obligation to initiate a tender process on one or more or all investment areas considered after the preliminary market consultation.

Based on the results, decide to go back to the market for further input

Demand side

How to participate?

On-line market survey (under a non-disclosure agreement)

How to stay in touch?

Question # 15 - We would like to retain your contact details for other potentially relevant direct emails and/or newsletters around HOOP initiatives.

https://hoopproject.eu/open-marketconsultation-process-launched-by-lipor/

https://forms.office.com/pages/responsep age.aspx?id=Yocl4_Zg02qx3nvqLXU7M1CH5hQxWZFu zGG1bhwKJpUMTVSRDFWWDNaRjhXS EMwVE1YMIFBTUVZMy4u

Transparency and confidentiality conditions

The report with all relevant info and **broad topics of discussion** and all **questions and answers** will be shared and made public in an **aggregated** and **anonymous form**.

Open market consultation can be **filmed and put online** and the **names of companies/entities** that attend and participated (to) the open market consultation will be **published** (also to encourage further networking also between actors that were not able to attend).

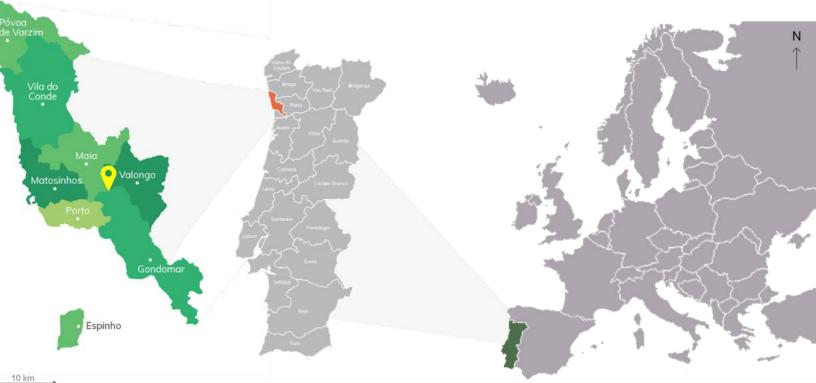
- However, economic operators are required to accept / not accept to share and make public the contact details in the HOOP website (question 16 questionnaire).
- However economic operators are responsible to indicate, in written form, what sensitive commercial information needs to be handled confidentially and cannot be disclosed through the market consultation report.

03 LIPOR

Who we are Biowaste management Innovation strategy & Product development

Susana Lopes and Telmo Machado, LIPOR

"To transform waste into new resources through the implementation of innovative and circular practices, generating and sharing value."



03 LIPOR

LIPOR – Municipalities Association for Sustainable Waste Management of Greater Porto, founded in 1982.

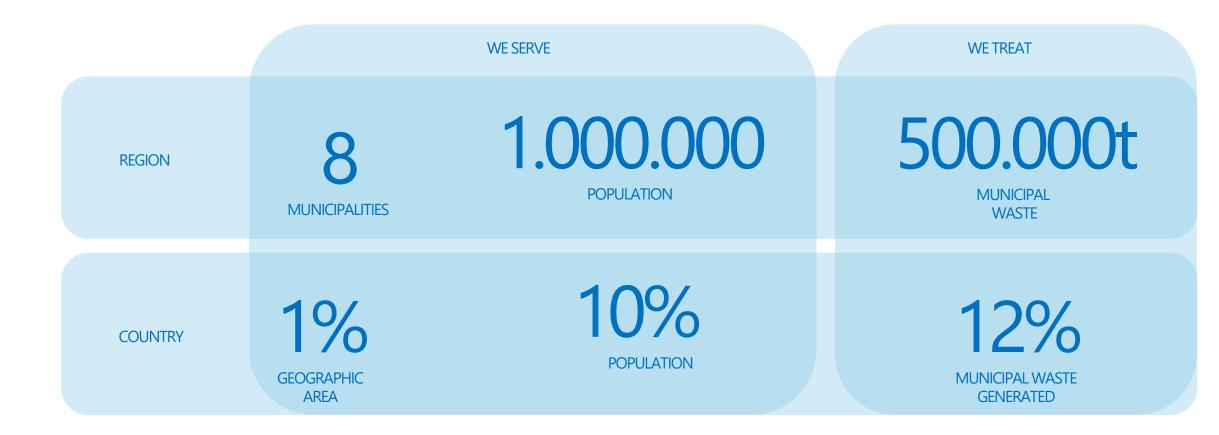
We specialise in waste treatment and recovery – managing, recovering and treating municipal waste generated by our 8 Associated Municipalities.

But we go further.

LIPOR

In Baguim do Monte/Ermesinde

Sorting plant, composting plant, operational support and management areas


LIPOR II

In Maia

WtE unit, technical confinement (landfill) and WWTP

IN:

+52kt t of biowaste to composting

+85 kt for multimaterial recovery

363 kt of municipal waste for energy recovery

OUT:

10 kt Nutrimais

76kt materials for recycling

163,182 MWh Electricity

Reduction and reuse

Treatment at source

Decentralized treatment

Centralized treatment

Reduction and reuse

Dose Certa

We foster healthier food catering

Reduction and reuse

Embrulha

We provide packages for leftovers in restaurants

Treatment at source

17 333 compost bins9 community composting sites

Decentralised treatment

Small-scale anaerobic digestion 900 t/year of food waste

Decentralised treatment

Green waste composting park 8000 t/year of garden and park waste

Centralised treatment

Composting plant 52kt biowaste 10kt mutrimais

Innovation Strategy & Product Development

Change in the business model

Unveil the potential value of waste and develop products and services for the Market

Desenvo

Desenvolvimento de Produtos

03 LIPOR

Innovation Strategy & Product Development

Slag from W2E

Innovation Strategy & Product Development Polymers

Innovation Strategy & Product Development

Products for agriculture

For heathy soils:

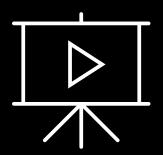
Natural organic compost

Growing media – 3 formulas

Wormcompost

Innovation Strategy & Product Development

Products for agriculture



I&D

LIPOR in HOOP

https://youtu.be/NJJ_A7xGpRg?feature=shared

Innovation Strategy & Product Development

Pyrolysis

To produce biochar for use in agriculture To treat refuse and waste streams that cannot be treated in the composting plant (eg. invasive plants)

Nutrient recovery

To produce circular P and N fertilisers To valorise digestate from LIPOR's future anaerobic digestion plant

04 LIPOR's Innovation Challenge

Solutions for nutrient recovery from liquid digestate

Susana Lopes and Tania Pinto, LIPOR

For the future anaerobic digestion plant, build a wastewater treatment plant capable to both **recover phosphorus** and **ammoniacal nitrogen** from the effluent to make a **marketable product** and **treat the wastewater** to **comply with discharge criteria**.

The desired solution should **optimize the trade-off** between high **nutrient recovery** system and **compliance of wastewater treatment** with discharge requirements.

Both nitrogen and phosphorus are valuable nutrients essential for fertiliser products. This is of interest for regional agriculture.

Baseline: Anaerobic digestion plant

Capacity: 65,000 t/yr of food waste from separate collection

Biogas to biomethane

Digestate to fertilisers

WWTP for efluent treatment

Achieve target for preparing for reuse and recycling of municipal waste

Carbon neutrality and circular economy

Baseline: Anaerobic digestion plant

Raw liquid digestate: about 160,000 t/year

The raw liquid digestate will be dewatered

The solid fraction will be **composted** and used as fertiliser/soil amendment

The liquid fraction (effluent) will be recirculated and/or treated

Liquid fraction (effluent) is around 150,000 m³/year

OPTIONS

- 1. A treatment module of 25,000 t/year (basic solution which only refers to the excess effluent stream)
- 2. A treatment module of 150,000 t/year (solution which refers to the entire liquid fraction of digestate)

Or anything in between?

Considerations:

- > Most of the nitrogen in the effluent is in form of **ammoniacal nitrogen** (NH4-N)
- > Possible recirculation of a large part of the effluent back to the anaerobic digestion (~125,000 m³/year)
- High concentrations of ammoniacal nitrogen can inhibit the anaerobic digestion

Characteristics

The untreated liquid fraction (effluent) in similar plants:

- has an ammoniacal nitrogen content of

3000 – 4500 mg/L

- has a total phosphorus content of

50 – 250 mg/L

(Other expected parameters for the effluent in the Table 1)

Table 1. Expected Effluent Parameters						
	Parameter	Unit	Average	Range		
	рН	Sorensen	8.3	7.8 - 8.8		
	BOD5 20°C	mg/L O2	3200	1500 – 7800		
	COD	mg/L O2	15200 (11300)	5400 – 25300		
				(3000 – 20100 dissolved)		
	TS	%	1.8	0.6 – 2.4		
	VS	%	56.4	45 – 75		
	TSS	mg/L	0.9	0.1 – 1.2		
	Conductivity	µS/cm	24200	8800 - 27600		
	Nitrogen total	mg/L N	2700	700 – 4600		
	Nitrogen ammoniacal	mg/L NH4	3600	1200 – 5000		
)	Phosphorus total	mg/L P	200 (130)	75 – 585		
	lotai			(55 – 350 dissolved)		
	Alkalinity	Mg CaCO3/L	11500	2300 – 14700		
	Carbonates	Mg CaCO3/L	720	100 – 2000		
	Bicarbonates	Mg HCO3/L	13400	2800 – 16700		

Innovation Challenge Requirements

Requirements for treated effluent (output after nutrient recovery):

- Total nitrogen content lower than 40 mg/L
- Ammoniacal nitrogen content lower than 30 mg/L
- Total phosphorus content lower than 20 mg/L

(Other requirements on Table 2)

Table 2. Output requirements					
Parameter	Unit	Limit accepted value			
рН	Sorensen	6.0 - 9.0			
BOD5 20°C	mg/L O2	≤ 500			
COD	mg/L O2	≤ 1000			
TSS	mg/L	≤ 500			
Conductivity	µS/cm	≤ 2000			
Nitrogen total	mg/L N	≤ 40			
Nitrogen - ammoniacal	mg/L NH4	≤ 30			
Nitrates	mg/L NO3	≤ 50			
Phosphorus total	mg/L P	≤ 20			
Sulphates	mg/L SO4	≤ 2000			
Sulphites	mg/L SO3	≤ 1			
Sulphides	mg/L S	≤ 1			
Chlorides total	mg/L Cl	≤ 150			
Available residual chlorine - free	mg/L Cl2	≤ 0.5			
Available residual chlorine - total	mg/L Cl2	≤ 1			
Aldehydes	mg/L	≤ 1			
Phenols	mg/L C6H5OH	≤ 0.5			
Oils and fats	mg/L	≤ 100			
Mineral oils	mg/L	≤ 15			
Detergents	mg/L	≤ 20			
Hydrocarbons total	mg/L	≤ 50			
Cyanides total	mg/L CN	≤ 0.5			
Aluminium	mg/L Al	≤ 10			
Iron – total	mg/L Fe	≤ 2			
Manganese – total	mg/L Mn	≤ 2			
Arsenic - total	mg/L As	≤ 1			
Lead -total	mg/L Pb	≤ 1			
Cadmium – total	mg/L Cd	≤ 0.2			
Chromium – total	mg/L Cr	≤ 2			
Chromium (VI)	mg/L Cr (VI)	≤ 0.1			
Mercury – total	mg/L Hg	≤ 0.05			
Copper - total	mg/L Cu	≤ 1			
Nickel - total	mg/L Ni	≤ 2			
Selenium – total	mg/L Se	≤ 0.05			
Tin	mg/L Sn	≤ 1			
Heavy metals – total	mg/L	≤ 10			

List of Functional Requirements	Performance Requirements
Must be able to treat an effluent with the characteristics in Table 1	Must comply with the parameters in Table 2
Must recover some ammoniacal nitrogen	Nice to recover at least 40% of ammoniacal nitrogen in the effluent
Must recover phosphorus	Nice to recover at least 15% of phosphorus in the effluent
Must allow the recirculation of liquid digestate	
Should provide a marketable product containing the recovered nutrients, preferably a fertiliser, which should comply with one or more of the categories in Fertiliser Product Regulation 2019/1009 and with the Portuguese fertiliser legislation DL30/2022 and P185/2022	
Should be economically sustainable , both in terms of investment size (CAPEX) as in terms of operational costs (OPEX) The desired solution needs to optimize the OPEX for nutrient recovery along the entire life-cycle	Transmit guaranteed performances in terms of energy consumption (kwh/m ³ of treated effluent) Transmit guaranteed performances in terms of consumables (t or m ³ /m ³ of treated effluent)
The desired solution should ideally not create new waste streams	

Answer the questionnaire available on HOOP website!

- Identify confidential information
- Reports and results will be presented in an aggregated and annonimised manner
- If we feel the need to discuss any aspect further, we might invite you for 1-2-1 meetings
- If you need any information: hoop-omc@lipor.pt

05 The state-of-the-art dialogue

Advanced commercial solutions and relevant R&D&I projects in the field

Miguel Ángel Suárez, Cetenma

State-of-the-art dialogue

State of the art

Stripping-scrubbing

Reverse osmosis

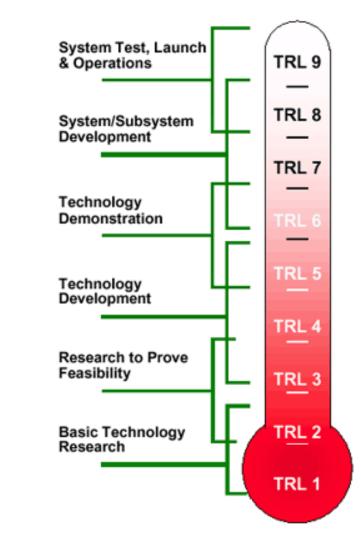
Membrane contactor

Ion exchange

Precipitation of ammonium salts

Microalgae production

Electrodialysis



State-of-the-art dialogue

- 1. Known technology, pilot or demo solving the same problem? What is the TRL?
- 2. "Should provide a marketable product containing the recovered nutrients, preferably a fertilizer, compliant with relevant legislation"?
- 3. Any technological/regulatory/market barriers and requirements?

- **State-of-the-art dialogue**
- Known technology, pilot or demo solving the same problem?
 What is the TRL?
- 2. "Should provide a marketable product containing the recovered nutrients, preferably a fertilizer, compliant with relevant legislation"?
- 3. Any technological/regulatory/market barriers and requirements?

