Technology #1 Fermentation of used cooking oils (UCOs)

Description

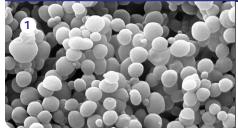
Waste cooking oil is a rich carbon source for bacteria, which is utilized in their metabolism to synthesize the fully biodegradable, non-toxic and biocompatible P3HB (a Polyhydroxyalkanoate - PHA). It has applications in cosmetics, biomedicine, packaging, agriculture and in 3D printing.

Bacteria are able to produce up to 0,70 kg of PHA out of 1 kg of UCO.

One of the advantages of implementing a technology for UCOs valorization is that it is not required to start the selective collection of the oil from scratch.

Innovation keys for the environment

- Production of a high-added-value product (much higher than biofuels) in a growing market sector.⁽¹⁾
- Reduction of the use of fossil-based polymers and virgin plastics
- Contributing to increasing the use of used cooking oil, which is harmful to the environment when disposed of inappropriately.


Biowaste feedstocks

Used cooking oil and other oily industrial waste streams (i.e., sludge palm oil)

Bioproducts

Bioproduct(s)	Market sector	Market price	
РНЗВ 1	Cosmetics 2	35 000 Eur/t	
	Biomedicine	50 000 Eur/t - 100 000 Eur/t	
	Bioplastic	4 780 Eur/t	

Process flowchart Air, water, mineral nutrients Cosmetics Wound dressing Packaging Used cooking Polymer Post-Fermentation **Biopolymer** isolation oil processing Fertilizer **Biomass residue** (to biogas plant) Biowaste feedstock Process step **Bioproduct** Legend: **Process input**

The HOOP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101000836.

Existing production plants

	Production plant location	Feedstock	Bioproduct	TRL	Production capacity (ton/ year bioproducts)	CAPEX	OPEX
1	Commercial plant in Ostrava, Czech Rep.	UCOs	РН3В	9	(45000 L/y producing 35 t PHA/y, expected to increase to 227500 L/y producing 175 t PHA/y).]	CAPEX > 1M€ (7,3 mil Euro for prod. capacity 175 t PHA/y)	11,2 Euro/kg for product. capacity 175 t PHA/y

Acknowledgements

WaysTup! waystup.eu

Biossupack biosuppack.eu

Further information

(1) Nowadays, about 90 % of used cooking oils (UCOs) collected is destined to biodiesel production.

Pospisilova, A., Novackova, I., Prikryl, R. Isolation of poly(3-hydroxybutyrate) from bacterial biomass using soap made of waste cooking oil, (2021) Bioresource Technology [online]. 326 [cit. 2022-05-06]. ISSN 09608524. doi:10.1016/j.biortech.2021.124683 https://www.sciencedirect.com/science/article/pii/S0960852421000213

Pospisilova, A., Melcova, V., Figalla, S., Mencik, P.; Prikryl, R. Techniques for increasing the thermal stability of poly[(R)-3-hydroxybutyrate] recovered by digestion methods, (2021) POLYMER DEGRADATION AND STABILITY, vol. 193, no. 1, p. 1-7. ISSN: 0141-3910. <u>https://www.sciencedirect.com/science/article/pii/S0141391021002470?via%3Dihub</u>

Mencik, P., Melcova, V., Kontarova, S., Prikryl, R., Perdochova, D., Repiska, M. Biodegradable composite materials based on poly(3 hydroxybutyrate) for 3D printing applications, (2019) Materials Science Forum, 955, p. 56-61. ISSN: 1662-9752. DOI: <u>https://doi.org/10.4028/www.scientific.net/MSF.955.56</u>

Dlasková A., Špaček T., Engstová H., Špačková J., Schröfel A., Holendová B., Smolková K., Plecitá-Hlavatá L., Ježek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load, (2019). Biochim Biophys Acta Bioenerg, 1860(8):659-678. DOI: <u>10.1016/j.</u> <u>bbabio.2019.06.015</u>

Mencik, P., Prikryl, R., Stehnova, I., Melcova, V., Kontarova, S., Figalla, S., Alexy, P., Bockaj, J. Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/ Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print, (2018) Materials, 11 (10), p. 1-20. DOI: <u>10.3390/ma11101893</u>

Obruca, S., Doskočil, L., Krzyzanek, V., Hrubanova, K., Sedlacek, P., Mravec, F., Samek, O., Kucera, D., Benesova, P., Marova, I., Polyhydroxyalkanoates in bacterial cells – more than just storage materials, (2016) Materials Science Forum, 851, pp. 20-25, DOI: <u>10.4028/www.scientific.net/MSF.851.20</u>

The HOOP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101000836.

